Improvement of external quantum efficiency depressed by visible light-absorbing hole transport material in solid-state semiconductor-sensitized heterojunction solar cells.
نویسندگان
چکیده
A mesoporous (mp)-TiO(2)/Sb(2)S(3)/P3HT [poly(3-hexylthiophene)] heterojunction solar cell displays reduced external quantum efficiency (EQE) at a wavelength of approximately 650 nm. This loss in EQE is due to incomplete charge carrier transport because the transportation of charge carriers generated in P3HT by the absorption of light into Sb(2)S(3) was inefficient, and consequently, the carriers recombined. The depression of the EQE was greatly relieved by introducing the porous structure formed by thermal decomposition of 2,2'-azobisisobutyronitrile (AIBN) into the P3HT layer.
منابع مشابه
Restricted charge recombination process in PbS quantum dot sensitized solar cells by different coating cycles of ZnS films
The relatively low power conversion efficiency (PCE) of quantum dot sensitized solar cells (QDSSCs) is attributed to charge recombination at the interfaces. Charge recombination process could be suppressed by coating the QD layer with a wide band gap semiconductor such as ZnS, which acts as a blocking layer between the QDs and hole transport material (HTM). In present study, to improve PCE of P...
متن کاملImprovement of light harvesting by inserting an optical spacer (ZnO) in polymer bulk heterojunction solar cells: A theoretical and experimental study
By introducing a thin ZnO layer as an optical spacer, we have demonstrated that inserting this layer between an active layer and a reflective electrode results in a re-distribution of the optical electric field inside bulk heterojunction solar cells. A theoretical analysis by optical modeling showed that the thin ZnO layer could shift the position of the maximum of the electric field into the a...
متن کاملDynamics of Interfacial Charge Transfer States and Carriers Separation in Dye-Sensitized Solar Cells: A Time-Resolved Terahertz Spectroscopy Study
Electron injection from a photoexcited molecular sensitizer into a wide-bandgap semiconductor is the primary step toward charge separation in dye-sensitized solar cells (DSSCs). According to the current understanding of DSSCs functioning mechanism, charges are separated directly during this primary electron transfer process, yielding hot conduction band electrons in the semiconductor and positi...
متن کاملFurther Improvement in Efficiency of ZnO Nanorod Based Solar Cells Using ZnS Quantum Dots as Light Harvester and Blocking Layer Material
Zinc oxide nanorod arrays (ZnO NRs) were grown on the ZnO seed layers via an aqueous solution using hydrothermal method and their photovoltaic properties were investigated. It was found that the growth period of 20 minutes is the optimum condition for ZnO nanorods growth, the cell containing these nanorods was considered as a reference cell. In order to further increase the cell performance, Zn...
متن کاملHigh-performance nanostructured inorganic-organic heterojunction solar cells.
We report all solid-state nanostructured inorganic-organic heterojunction solar cells fabricated by depositing Sb(2)S(3) and poly(3-hexylthiophene) (P3HT) on the surface of a mesoporous TiO(2) layer, where Sb(2)S(3) acts as an absorbing semiconductor and P3HT acts as both a hole conductor and light absorber. These inorganic-organic light harvesters perform remarkably well with a maximum inciden...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 4 2 شماره
صفحات -
تاریخ انتشار 2012